Spermidine biosynthesis and transport modulate pneumococcal autolysis.

نویسندگان

  • Adam J Potter
  • James C Paton
چکیده

Polyamines are small cationic molecules that have far-reaching roles in biology. In the case of pathogenic bacteria, these functions include those central to their pathogenesis. Streptococcus pneumoniae is a major bacterial pathogen, causing a diverse range of diseases that account for significant morbidity and mortality worldwide. In this work, we characterize the polyamine biosynthetic pathway of S. pneumoniae, demonstrating that this organism produces spermidine from arginine. The synthesis of spermidine was found to be nonessential for growth in a polyamine-free chemically defined medium. However, mutant strains lacking the ability to synthesize or transport spermidine displayed a significant delay in the onset of autolysis. We provide evidence for a model in which spermidine modulates the activity of the major autolysin LytA in the pneumococcal cell wall compartment via interactions with negatively charged molecules, such as teichoic acids.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Involvement of potD in Streptococcus pneumoniae polyamine transport and pathogenesis.

Polyamines such as putrescine, spermidine, and cadaverine are small, polycationic molecules that are required for optimal growth in all cells. The intracellular concentrations of these molecules are maintained by de novo synthesis and transport pathways. The human pathogen Streptococcus pneumoniae possesses a putative polyamine transporter (pot) operon that consists of the four pot-specific gen...

متن کامل

Nuclear and membrane receptor-mediated signalling pathways modulate polyamine biosynthesis and interconversion.

Polyamines play an important role in cell growth and differentiation, while their overproduction has potentially oncogenic consequences. Polyamine homoeostasis, a critical determinant of cell fate, is precisely tuned at the level of biosynthesis, degradation and transport. The enzymes ODC (ornithine decarboxylase), AdoMetDC (S-adenosylmethionine decarboxylase) and SSAT (spermidine/spermine N(1)...

متن کامل

In vitro bactericidal activity of the antiprotozoal drug miltefosine against Streptococcus pneumoniae and other pathogenic streptococci.

Miltefosine (hexadecylphosphocholine), the first oral drug against visceral leishmaniasis, triggered pneumococcal autolysis at concentrations higher than 2.5 microM. Bactericidal activity was also observed in cultures of other streptococci, although these failed to undergo lysis. The autolysis elicited by miltefosine can be attributed to triggering of the pneumococcal autolysin LytA.

متن کامل

Polyamine transporter in Streptococcus pneumoniae is essential for evading early innate immune responses in pneumococcal pneumonia

Streptococcus pneumoniae is the most common bacterial etiology of pneumococcal pneumonia in adults worldwide. Genomic plasticity, antibiotic resistance and extreme capsular antigenic variation complicates the design of effective therapeutic strategies. Polyamines are ubiquitous small cationic molecules necessary for full expression of pneumococcal virulence. Polyamine transport system is an att...

متن کامل

Tyrosine phosphorylation enhances activity of pneumococcal autolysin LytA.

Tyrosine phosphorylation has long been recognized as a crucial post-translational regulatory mechanism in eukaryotes. However, only in the past decade has recognition been given to the crucial importance of bacterial tyrosine phosphorylation as an important regulatory feature of pathogenesis. This study describes the effect of tyrosine phosphorylation on the activity of a major virulence factor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of bacteriology

دوره 196 20  شماره 

صفحات  -

تاریخ انتشار 2014